Prefix, Number and Name of Course: ACM 654 Mathematics of Finance I: Modeling, Analysis and Numerical Methods

Credit Hours: 1
In Class Instructional Hours: 1 Labs: 0 Field Work: 0

Catalog Description:
Prerequisites: Math325/Math381 or equivalent and Instructor Permission

Put-call parity equation, risk-neutral probability, binomial tree analysis.

Reasons for addition:
Mathematics of Finance I is the first of the two one-credit courses designed to enrich and broaden the department’s graduate course offerings by integrating probability, differential equations and numerical analysis through in-depth study of their connections to finance and economics. This sequence will enhance the Professional Applied and Computational Mathematics program by providing students with additional knowledge that they can build upon in their internship or projects.

<table>
<thead>
<tr>
<th>Student Learning Outcomes:</th>
<th>Content Reference:</th>
<th>Assessment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Break down and analyze the theoretical models and numerical methods for solving the real-world finance problems.</td>
<td>II, III, V, IV.</td>
<td>Group and individual assignments, examinations, and computer projects.</td>
</tr>
<tr>
<td>2. Build pricing models and solve problems by applying the key theorems, tools and techniques in mathematical finance.</td>
<td>I, II, IV, V.</td>
<td>Group and individual assignments, examinations, and computer projects.</td>
</tr>
<tr>
<td>3. Utilize computer software and develop programs to produce and solve the financial mathematical models.</td>
<td>IV, V.</td>
<td>Group and individual assignments, examinations, and computer projects.</td>
</tr>
</tbody>
</table>

Course Content:

I. Definitions and fundamental financial derivative tools
 A. Fundamental financial derivatives
 B. Pricing futures contracts
 C. Bonds derivatives
 D. Interest rate futures and derivatives
 E. Exchange rate derivatives

II. The fundamental derivatives pricing model: put-call parity
 A. Stock put-call parity equation
 B. Synthetic stocks and treasures
 C. The equation for exchange options
 D. The equation for currency options

III. Comparing options
A. American options
B. Three inequalities

IV. Binomial tree analysis - one period
A. The game theory method
B. The fundamental law of no arbitrage
C. Replicating methods
D. Volatility

V. Binomial tree analysis - general cases
A. Multi-period binomial trees
B. American options
C. Currency options
D. Futures
E. Risk-neutral pricing: true and risk-neutral probabilities

Resources:

Scholarships in the Field:

John Hull, *Options, Futures, and Other Derivatives 8th*, 2011

Jorion, P. *How Long-Term Lost Its Capital*, 1999

Malliavin, *Stochastic Calculus of Variations in Mathematical Finance*, 2005

Periodicals:
Journal of Mathematical Finance
Journal of Computational Finance
Journal of Financial and Quantitative Analysis
Journal of Finance
Journal of Financial Derivatives
Quantitative Finance
The Journal of Fixed Income
Finance and Stochastic
Journal of Financial Studies
Journal of Money, Credit and Banking
Journal of Derivatives
Journal of Banking and Finance
Mathematics and Financial Economics
Journal of Futures Markets

Electronic and Audiovisual Resources:
Society of Mathematical Finance, https://win.wisc.edu/organization/smf

The Actuarial Profession, www.soa.org/careers

Careers in Applied Mathematics, www.siam.org/careers/

Mathematical Sciences Career Information, www.ams.org/careers

Center for Research in Financial Mathematics and Statistics at UC Santa Barbara, http://www.youtube.com/watch?v=bliQRRllJoA

Financial Engineering & Financial Mathematics http://www.youtube.com/watch?v=ABhfQk3qgVk&playnext=1&list=PLE981F9D9EA1F7078&feature=results_main