Prefix, Number and Name of Course: PSM 603 Topics in Professional Math and Science

Credit Hours: 3
In-Class Instructional Hours: 3 Labs: 0 Field Work: 0

Catalog Description
Prerequisites: Graduate-level standing

Examination of topics in business and management to develop strategic thinking about quantitative information and aid in improving business and leadership skills for mathematicians and scientists within a variety of settings (i.e. industrial, managerial, academic, research).

Reasons for Addition
This course will be one of the three foundational PLUS (business-related) classes required by our Professional Science Masters (PSM) Professional Applied and Computational Mathematics (PACM) program, and is also required by many PSM degrees across campus and nationwide. The creation of the PSM degree has provided a place for the systematic development of management techniques customized for science and mathematics students. PSM 603 is intended to provide students with a comprehensive understanding of various business and management disciplines that they may encounter when they enter industry. By offering this as a special topics class, we can tailor this class to the current, specific program needs. Specific topics covered will vary in accordance with the instructor’s area of specialization.

<table>
<thead>
<tr>
<th>Student Learning Outcomes</th>
<th>Course Content References</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Assess ethical theories in business-related activities and apply the techniques in real-world math and science scenarios.</td>
<td>I</td>
<td>1. Participation in class discussion, case studies, quizzes</td>
</tr>
<tr>
<td>2. Evaluate the practices, capabilities, and patterns leaders use to transform challenging opportunities into successes.</td>
<td>II</td>
<td>2. Participation in class discussion, in-class workshop and activities, individual assignments, quizzes</td>
</tr>
<tr>
<td>3. Apply the appropriate managerial and business issues critical to analyzing accounting data and other information used for identifying and assessing opportunities and risks, developing organizational plans, allocating resources, and accomplishing objectives.</td>
<td>III</td>
<td>3. Participation in class discussion, case studies, analysis of company financials, quizzes</td>
</tr>
<tr>
<td>4. Assess and apply the different phases of negotiation in the workplace.</td>
<td>IV</td>
<td>4. Participation in class discussion, case studies, quizzes</td>
</tr>
<tr>
<td>5. Evaluate the conditions that might affect the likelihood for a conflict and the impact of</td>
<td>IV</td>
<td>5. Participation in class discussion, case studies, quizzes</td>
</tr>
</tbody>
</table>
different conflict handling styles in the workplace.

6. Analyze, evaluate, and apply problem solving processes and techniques. V

6. Participation in class discussion, in-class group workshops and activities, quizzes

7. Demonstrate ability to communicate with team members when solving problems, within and outside of the math and science disciplines. I, II, III, IV, V, VI

7. Participation in class discussion, in-class workshops and activities, presentations

Course Content

I. Ethical theories and professional ethics in the applied sciences
 A. Theoretical foundations of research and business ethics
 B. Practical problems, representative applications, and case examples in the STEM (science, technology, engineering, and mathematics) fields

II. Leadership and management for applied sciences
 A. Fundamental principles that support leadership practices
 i. Modeling
 ii. Shared vision
 iii. Challenging the process
 iv. Enabling others
 v. Encouragement

III. Accounting and finance for applied sciences
 A. Firm value and future cash flows (private, public, and government)
 B. Comparative analysis
 C. How to read financial statements (from a team member perspective)
 D. Risk assessment
 E. Case examples in related STEM industries

IV. Negotiation strategies
 A. Distributive and integrative bargaining
 B. Negotiation and barriers to negotiation
 C. Foundations and methods of effective bargaining
 D. Negotiation ethics
 E. Group negotiation project in STEM sciences

V. Creative problem solving
 A. Links between creativity, problem solving, and decision making
 B. Principle elements of problem solving
 C. Problem solving processes and techniques
 D. Problem solving teams and problem solving leadership (introduction)
E. Case studies and examples in the STEM sciences

Resources

Scholarships:

Periodicals:
Business Communication Quarterly
Ethical Theory and Moral Practice
Harvard Business Review
Harvard Management Communication Letter
Issues in Ethics
Journal of Behavioral and Applied Management
Journal of Business Communication
Journal of Business and Technical Communication
Journal of Information Ethics
Journal of Leadership Studies
Journal of Risk Finance
Leadership Quarterly
Professional Ethics
Science and Engineering Ethics

Electronic and/or Audiovisual Resources:
American Society of Civil Engineers
http://www.asce.org/professional/ethics/

Applied Ethics in Professional Practice Program
http://www.murdough.ttu.edu/pd.cfm?pt=AECM

Baruch College: Guide to Financial Statements
http://www.baruch.cuny.edu/tutorials/statements/

Center for the Study of Ethics in the Professions
http://www.iit.edu/departments/csep/

National Institute for Engineering Ethics
http://www.murdough.ttu.edu/pd.cfm?pt=NIEE

Online Ethics Center for Engineering and Science
http://temp.onlineethics.org/cases/nspe/index.html

Online Ethics Center, National Academy of Engineering

The Society for Technical Communication